Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles.
نویسندگان
چکیده
NR2A and NR2B are the predominant NR2 NMDA receptor subunits expressed in cortex and hippocampus. The relative expression level of NR2A and NR2B is regulated developmentally and these two subunits have been suggested to play distinct roles in long-term synaptic plasticity. We have used patch-clamp recording of recombinant NMDA receptors expressed in HEK293 cells to characterize the activation properties of both NR1/NR2A and NR1/NR2B receptors. Recordings from outside-out patches that contain a single active channel show that NR2A-containing receptors have a higher probability of opening at least once in response to a brief synaptic-like pulse of glutamate than NR2B-containing receptors (NR2A, 0.80; NR2B, 0.56), a higher peak open probability (NR2A, 0.50; NR2B, 0.12), and a higher open probability within an activation (NR2A, 0.67; NR2B, 0.37). Analysis of the sequence of single-channel open and closed intervals shows that both NR2A- and NR2B-containing receptors undergo multiple conformational changes prior to opening of the channel, with at least one of these steps being faster for NR2A than NR2B. These distinct properties produce profoundly different temporal signalling profiles for NR2A- and NR2B-containing receptors. Simulations of synaptic responses demonstrate that at low frequencies typically used to induce long-term depression (LTD; 1 Hz), NR1/NR2B makes a larger contribution to total charge transfer and therefore calcium influx than NR1/NR2A. However, under high-frequency tetanic stimulation (100 Hz; > 100 ms) typically used to induce long-term potentiation (LTP), the charge transfer mediated by NR1/NR2A considerably exceeds that of NR1/NR2B.
منابع مشابه
Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala.
NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors a...
متن کاملNMDA di-heteromeric receptor populations and associated proteins in rat hippocampus.
Subunit composition of NMDA receptors (NMDARs) determines a range of physiological properties, downstream signaling effects, and binding partners. Differential localization of NR2A- or NR2B-containing NMDARs within the neuron and subunit-specific protein associations may explain differences in NR2A and NR2B contributions to synaptic plasticity and excitotoxic cell death. This question is compli...
متن کاملFunctional consequences of NR2 subunit composition in single recombinant N-methyl-D-aspartate receptors.
Single-channel recordings were obtained from Chinese hamster ovary cells transfected with the N-methyl-D-aspartate (NMDA) receptor subunit NR1 in combination with NR2A, NR2B, NR2C, or NR2A/NR2B. NMDA-activated currents were recorded under control conditions and in the presence of a thiol reductant (DTT), an oxidant (5, 5'-dithio-bis[2-nitrobenzoic acid], DTNB), or the noncompetitive antagonist ...
متن کاملSubunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit.
The N-methyl-D-aspartate (NMDA) receptor is assembled using proteins from two gene families, NR1 and NR2. Although a few studies have examined the composition of NMDA receptors containing NR1, NR2A, and NR2B, the composition of native NMDA receptors that incorporate the NR2D subunit is not known. The goal of the current study was to examine the subunit composition of native NMDA receptors that ...
متن کاملA critical role of the N-methyl-D-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors.
In recombinant N-methyl-D-aspartate (NMDA) receptors, two redox modulatory sites are thought to exist, one formed by Cys744 and Cys798 on NMDA receptor subunit (NR) 1, and a second one, not yet localized, on NR2A. Reductants increase the open dwell-time and opening frequency of NR1/NR2A channels. In contrast, NR1/NR2B and NR1/NR2C channels exhibit changes only in opening frequency after redox t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 563 Pt 2 شماره
صفحات -
تاریخ انتشار 2005